Large and moderate deviations for random sets and random upper semicontinuous functions
نویسندگان
چکیده
منابع مشابه
A Large Deviation Principle for Random Upper Semicontinuous Functions
We obtain necessary and sufficient conditions in the Large Deviation Principle for random upper semicontinuous functions on a separable Banach space. The main tool is the recent work of Arcones on the LDP for empirical processes.
متن کاملA Note on Random Upper Semicontinuous Functions
This note aims at presenting the most general framework for a class U of random upper semicontinuous functions, namely random elements whose sample paths are upper semicontinuous (u.s.c.) functions, defined on some locally compact, Hausdorff and second countable base space, extending Matheron’s framework for random closed sets. It is shown that while the natural embedding process does not provi...
متن کاملOn a Choquet Theorem for Random Upper Semicontinuous Functions
We extend some topologies on the space of upper semicontinuous functions with compact support to those on that of general upper semicontinuous functions and see that graphical topology and modified L topology are the same. We then define random upper semicontinuous functions using their topological Borel field and finally give a Choquet theorem for random upper semicontinuous functions.
متن کاملModerate deviations for random fields and random complex zeroes
Moderate deviations for random complex zeroes are deduced from a new theorem on moderate deviations for random fields.
متن کاملStrong Laws of Large Numbers for Random Upper-semicontinuous Fuzzy Sets
In this paper, we concern with SLLN for sums of independent random upper-semicontinuous fuzzy sets. We first give a generalization of SLLN for sums of independent and level-wise identically distributed random fuzzy sets, and establish a SLLN for sums of random fuzzy sets which is independent and compactly uniformly integrable in the strong sense. As a result, a SLLN for sums of independent and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Approximate Reasoning
سال: 2013
ISSN: 0888-613X
DOI: 10.1016/j.ijar.2012.07.003